Vnitr Lek 2017, 63(10):703-706 | DOI: 10.36290/vnl.2017.139

Intestinal adaptation following gut resection

Jarmila Křížová*, Pavel Trachta, Eva Kotrlíková
III. interní klinika 1. LF UK a VFN v Praze

Gut resection is followed by wide changes in the gastrointestinal tract. The goal is to increase nutrient, water and mineral absorption in the remnant intestine. These changes are going on for several months. They affect gut mucosa structure, intestine peristaltic activity and enterocytes function. The crucial role is ileum preserving. Ileum has higher adaptation ability comparing to jejunum and inhibits peristaltic function of proximal parts of GIT. A lot of factors involved in intestinal adaptation were identified, hormones, growth factors, regulating peptides, intracellular signalizing cascades, cytokines and tissue factors. The most important seems to be GLP2 (glucagon like peptide 2) which has positive trophic influence on gut mucosa. Early enteral nutrition after gut resection enhances its adaptation. Recombinant analogueGLP2 teduglutide was introduced to be used in the short bowel syndrome treatment. It inhibits stomach evacuation and hypersecretion, increases intestine perfusion and enhances intestinal adaptation. Its long-term application accelerates the parenteral nutrition weaning.

Keywords: enteral nutrition; enterocytes; GLP2; gut resection; intestinal adaptation

Received: September 10, 2017; Accepted: September 27, 2017; Published: October 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Křížová J, Trachta P, Kotrlíková E. Intestinal adaptation following gut resection. Vnitr Lek. 2017;63(10):703-706. doi: 10.36290/vnl.2017.139.
Download citation

References

  1. Jeppesen PB. Gut hormones in the treatment of short-bowel syndrome and intestinal failure. Curr Opin Endocrinol Diabetes Obes 2015; 22(1): 14-20. Dostupné z DOI: <http://dx.doi.org/10.1097/MED.0000000000000120>. Go to original source... Go to PubMed...
  2. Tappenden KA. Intestinal adaptation following resection. JPEN J Parenter Enteral Nutr 2014; 38(1 Suppl): S23-S31. Dostupné z DOI: <http://dx.doi.org/10.1177/0148607114525210>. Go to original source... Go to PubMed...
  3. Seetharam P, Rodrigues G. Short bowel syndrome: a review of management options. Saudi J Gastroenterol 2011; 17(4): 229-235. Dostupné z DOI: <http://dx.doi.org/10.4103/1319-3767.82573>. Go to original source... Go to PubMed...
  4. Fjermestad H, Hvistendahl M, Jeppesen PB. Fasting and Postprandial Plasma Citrulline and the Correlation to Intestinal Function Evaluated by 72-Hour Metabolic Balance Studies in Short Bowel Jejunostomy Patients With Intestinal Failure. JPEN J Parenter Enteral Nutr 2017: 148607116687497. Dostupné z DOI: <http://dx.doi.org/10.1177/0148607116687497>. Go to original source... Go to PubMed...
  5. Dekaney CM, Fong JJ, Rigby RJ et al. Expansion of intestinal stem cells associated with long-term adaptation following ileocecal resection in mice. Am J Physiol Gastrointest Liver Physiol 2007; 293(5): G1013-G1022. Go to original source... Go to PubMed...
  6. Helmrath MA, Fong JJ, Dekaney CM et al. Rapid expansion of intestinal secretory lineages following a massive small bowel resection in mice. Am J Physiol Gastrointest Liver Physiol 2007; 292(1): G215-G222. Go to original source... Go to PubMed...
  7. Tang Y, Swartz-Basile DA, Swietlicki EA et al. Bax is required for resection-induced changes in apoptosis, proliferation, and members of the extrinsic cell death pathways. Gastroenterology 2004; 126(1): 220-230. Go to original source... Go to PubMed...
  8. Uchiyama M, Iwafuchi M, Matsuda Y et al. Intestinal motility after massive small bowel resection in conscious canines: comparison of acute and chronic phases. J Pediatr Gastroenterol Nutr 1996; 23(3): 217-223. Go to original source... Go to PubMed...
  9. O'Connor TP, Lam MM, Diamond J. Magnitude of functional adaptation after intestinal resection. Am J Physiol 1999; 276(5 Pt 2): R1265-R1275. Go to original source... Go to PubMed...
  10. Musch MW, Bookstein C, Rocha F et al. Region-specific adaptation of apical Na/H exchangers after extensive proximal small bowel resection. Am J Physiol Gastrointest Liver Physiol 2002; 283(4): G975-G985. Go to original source... Go to PubMed...
  11. Rubin DC, Levin MS. Mechanisms of intestinal adaptation. Best Pract Res Clin Gastroenterol 2016; 30(2): 237-248. Dostupné z DOI: <http://dx.doi.org/10.1016/j.bpg.2016.03.007>. Go to original source... Go to PubMed...
  12. Gillard L, Billiauws L, Stan-Iuga B et al. Enhanced Ghrelin Levels and Hypothalamic Orexigenic AgRP and NPY Neuropeptide Expression in Models of Jejuno-Colonic Short Bowel Syndrome. Sci Rep 2016; 6: 28345. Dostupné z DOI: <http://dx.doi.org/10.1038/srep28345>. Go to original source... Go to PubMed...
  13. DiBaise JK, Young RJ, Vanderhoof JA. Intestinal rehabilitation and short bowel syndrome: Part 2. Am J Gastroenterol 2004; 99(9): 1823-1832. Go to original source... Go to PubMed...
  14. Nightingale JM, Kamm MA, van der Sijp JR et al. Disturbed gastric emptying in the short bowel syndrome. Evidence for a 'colonic brake'. Gut 1993; 34(9): 1171-1176. Go to original source... Go to PubMed...
  15. Fuller PJ, Beveridge DJ, Taylor RG. Ileal proglucagon gene expression in the rat: characterization in intestinal adaptation using in situ hybridization. Gastroenterology 1993; 104(2): 459-466. Go to original source... Go to PubMed...
  16. Dowling RH. Polyamines in intestinal adaptation and disease. Digestion 1990; 46(Suppl 2): S331-S344. Go to original source... Go to PubMed...
  17. Bjerknes M, Cheng H. Modulation of specific intestinal epithelial progenitors by enteric neurons. Proc Natl Acad Sci USA 2001; 98(22): 12497-12502. Go to original source... Go to PubMed...
  18. Gianino S, Grider JR, Cresswell J et al. GDNF availability determines enteric neuron number by controlling precursor proliferation. Development 2003; 130(10): 2187-2198. Go to original source... Go to PubMed...
  19. Drucker DJ, Ehrlich P, Asa SL et al. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc Natl Acad Sci USA 1996; 93(15): 7911-7916. Go to original source... Go to PubMed...
  20. Madsen KB, Askov-Hansen C, Naimi RM et al. Acute effects of continuous infusions of glucagon-like peptide (GLP)-1, GLP-2 and the combination (GLP-1+GLP-2) on intestinal absorption in short bowel syndrome (SBS) patients. A placebo-controlled study. Regul Pept 2013; 184: 30-39. Dostupné z DOI: <http://dx.doi.org/10.1016/j.regpep.2013.03.025>. Go to original source... Go to PubMed...
  21. Rowland KJ, McMellen ME, Wakeman D et al. Enterocyte expression of epidermal growth factor receptor is not required for intestinal adaptation in response to massive small bowel resection. J Pediatr Surg 2012; 47(9): 1748-1753. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jpedsurg.2012.03.089>. Go to original source... Go to PubMed...
  22. Choi P, Guo J, Erwin CR et al. IGF-2 mediates intestinal mucosal hyperplasia in retinoblastoma protein (Rb)-deficient mice. J Pediatr Surg 2013; 48(6): 1340-1347. Dostupné z DOI: <http://dx.doi.org/10.1016/j.jpedsurg.2013.03.042>. Go to original source... Go to PubMed...
  23. Garcia SB, Kawasaky MC, Silva JC et al. Intrinsic myenteric denervation: a new model to increase the intestinal absorptive surface in short-bowel syndrome. J Surg Res 1999; 85(2): 200-203. Go to original source... Go to PubMed...
  24. Wefer H, Nystrom N, Finkel Y et al. Intestinal dysbiosis in children with short bowel syndrome is associated with impaired outcome. Microbiome 2015; 3: 18. Dostupné z DOI: <http://dx.doi.org/10.1186/s40168-015-0084-7>. Go to original source... Go to PubMed...
  25. Till H, Castellani C, Moissl-Eichinger C et al. Disruptions of the intestinal microbiome in necrotizing enterocolitis, short bowel syndrome, and Hirschsprung's associated enterocolitis. Front Microbiol 2015; 6: 1154. Dostupné z DOI: <http://dx.doi.org/10.3389/fmicb.2015.01154>. Go to original source... Go to PubMed...
  26. Lapthorne S, Pereira-Fantini PM, Fouhy F et al. Gut microbial diversity is reduced and is associated with colonic inflammation in a piglet model of short bowel syndrome. Gut Microbes 2013; 4(3): 212-221. Dostupné z DOI: <http://dx.doi.org/10.4161/gmic.24372>. Go to original source... Go to PubMed...
  27. Wales PW, Nasr A, de Silva N et al. Human growth hormone and glutamine for patients with short bowel syndrome. Cochrane Database Syst Rev 2010; (6): CD006321. Dostupné z DOI: <http://dx.doi.org/10.1002/14651858.CD006321.pub2>. Go to original source... Go to PubMed...
  28. Pironi L, Arends J, Bozzetti F et al. ESPEN guidelines on chronic intestinal failure in adults. Clin Nutr 2016; 35(2): 247-307. Dostupné z DOI: <http://dx.doi.org/10.1016/j.clnu.2016.01.020>. Go to original source... Go to PubMed...




Vnitřní lékařství

Madam, Sir,
please be aware that the website on which you intend to enter, not the general public because it contains technical information about medicines, including advertisements relating to medicinal products. This information and communication professionals are solely under §2 of the Act n.40/1995 Coll. Is active persons authorized to prescribe or supply (hereinafter expert).
Take note that if you are not an expert, you run the risk of danger to their health or the health of other persons, if you the obtained information improperly understood or interpreted, and especially advertising which may be part of this site, or whether you used it for self-diagnosis or medical treatment, whether in relation to each other in person or in relation to others.

I declare:

  1. that I have met the above instruction
  2. I'm an expert within the meaning of the Act n.40/1995 Coll. the regulation of advertising, as amended, and I am aware of the risks that would be a person other than the expert input to these sites exhibited


No

Yes

If your statement is not true, please be aware
that brings the risk of danger to their health or the health of others.